Cellular and molecular mechanisms of muscle atrophy

نویسندگان

  • Paolo Bonaldo
  • Marco Sandri
چکیده

Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Aerobic Training and Tribulus Terrestris Extract on Muscle Atrophy Indices and Oxidant-Pro-Oxidant Balance in Extensor Digitorum Longus Muscles of Type 2 Diabetic Desert Rats

Background & Aims: Performing normal daily activities requires sufficient muscle size and strength, and atrophy has a negative effect on the overall quality of life; So that the decrease in skeletal muscle mass leads to a decrease in human performance, long-term health and low quality of life. Diabetes is associated with the development of secondary complications in various organs, especially s...

متن کامل

Effect of Eight Weeks of Resistance Training on Myostatin and Folistatin Proteins Content in Gastrocnemius Muscle Tissue of Elderly Rats

Introduction: Myostatin and follistatin proteins are key proteins in the regulation of muscle atrophy and hypertrophy. Aging and sarcopenia can lead to disruption of cellular mechanisms and the activity of these proteins. Therefore, the aim of the present study was to investigate the effect of eight weeks of resistance training on myostatin and folistatin proteins content in Gastrocnemius muscl...

متن کامل

Spinal Muscular Atrophy: A Short Review Article

Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...

متن کامل

Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures

Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several diff...

متن کامل

O14: Cellular and Molecular Mechanisms of Spinal Cord Trauma

لطفاً به چکیده انگلیسی مراجعه شود.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013